
Chris Hall

I took on the task of editing a series of

books for the Signalling Record Society,

the major part of each volume was a list of

the signal boxes on each stretch of railway

line. All I had to do was to present and

index the data so that any entry could

readily be found by the reader.

I wanted to make the information

available on line, so I based my approach

on creating an HTML master for both

printing and viewing. The authors of the

first volume had laid out the data (what

type of signal box, opening and closing

date, type of lever frame, etc.) in the form

of a spreadsheet.

It therefore seemed obvious that I

would need to read in each row, line by

line, and hold the data in arrays. Within

BASIC I could then produce an index and

listing as a (very) large HTML page. Each

entry was enclosed by HTML table tags.

The BASIC programme to do this

(read a spreadsheet and produce an

HTML page from it) grew rapidly (5500

lines in 2007, 9300 in 2009 and 15800

lines in 2015) as I added more features.

[Note: description of this programme is

outside the scope of this magazine as it was

written in BBC BASIC for Windows – mainly

to avoid the 256byte limit on string length]

Initially the page was simply viewed in

a browser window, navigating by means of

'hot links' but by suppressing the links and

adding style sheets could be turned into a

PDF using Acrobat Distiller. It was fairly

easy to introduce photos to fill gaps at the

bottom of pages and add page numbers —

the result was acceptable.

I published the first volume in 2007:

the book listed railway lines and signal

boxes – their building design and the type

of equipment they contained – and was

rather dry: illustrations would certainly

help. I was thus keen to illustrate the book

with a coloured map for each section

showing railway lines in the area covered,

marking those listed in that section.

All I needed to do was to trace out

each railway line in Britain, recording the

grid reference and mile post mileage at

each point. Then I would have the

necessary data to produce a map.

I had, by now, found a web site

(npemap.org.uk) that would display scanned

map tiles from the 1940s (out of

copyright) Ordnance Survey maps

(showing old railway lines and lined up

with the National Grid). I also had my

mother's school atlas, showing the pre-

Grouping railway companies (i.e. pre-

1922) which would provide a suitable

pastel-shaded backround for the maps.

At this stage I could thus see in a

browser window the route taken by each

railway line. I also knew the milepost

mileage of each signal box and the

milepost mileage at the extremity of each

railway line.

Stages 1 and 2 would involve tracing

each railway line and recording the result.

Back to the book

By painstaking manual methods, I had

worked out the grid reference of each box

in the first volume (published in 2007 with

no maps) and the authors had provided

the milepost mileage of each box (the

distance along the line: all railway

companies were required by law to fence

their lines and to provide mileposts every

quarter of a mile along every line).

However many boxes were listed with

no grid reference quoted. Once each line

had been traced it should be possible to

1 � Article

It Started So Well ...

calculate the grid reference from the

milepost mileage.

Stage 3 would create a spreadsheet to

do this calculation. Stage 4 would draw a

map showing the traced lines.

Should the master be HTML?

I was not satisfied that creating an HTML

master, laid out by Internet Explorer and

turned into a PDF by Acrobat Distiller

was the right method to produce a book.

The method seemed to give me complete

control over how each page should look

but was not without problems.

I found this method rather sensitive to

the algorithms used by the browser and the

distiller to lay out the HTML tables: a

‘Windows software update’ could change

the Internet Explorer version so that the

pagination went awry and caused me

annoying difficulties with page layout.

I therefore decided to generate the

page layout myself (i.e. generate a

spreadsheet with the page, row and

column number(s) as well as css style

information and the relevant text for each

cell but no HTML tags). I would then

turn this into individual Draw files for

each page of the book.

I had, by now, ended up with an

HTML file containing nested tables – the

outer tables specified odd and even page

gutters for each page, plus a page number.

The inner table contained a mixture of

multi-line and multi-row cells. It was

easier than it might seem to convert the

HTML '<TR>' and '<TD>' tags to a

spreadsheet row containing a row and

column number.

Each row of the spreadsheet would

have page number, first row, last row, left

column, right column, style, font, text for

each cell of text. This would identify how

to justify the text, which font and size to

use – this had already been worked out for

the HTML output.

Stage 5 would therefore use a new

method to produce individual Draw files

for each page of the book. Stage 6 would

turn these Draw files into PDF files in a

'hands off' batch process.

This had turned into six major pieces

of work. I think the best way to explain

this is to write an article for each stage.

Summarising

Summing up the process to produce the

book, it starts by reading the detailed data

from a spreadsheet into a BBC BASIC

programme that produces another

spreadsheet. This is then processed under

RISC OS using BASIC into individual

Draw files, each file forming a page of the

book. The draw files are then batch

processed into PDF files which are then

combined into a single, print-ready PDF

file using Adobe Acrobat.

This used my Iyonix (now retired), my

ARMX6, an ARMiniX, Virtual RiscPC,

Artworks, !MakeDraw as well as Adobe

Acrobat 8.3 Standard under Windows 7.

Chris Hall chris@svrsig.org

2 � Article

The six stages of the project

The project started to look rather intimidating:

1: generate some map tiles for Ireland that showed old railways so that I could trace them

and publish them;

2: trace each railway line, recording the grid reference at every point;

3: work out the grid reference of each signal box, knowing its distance along the line and

then cross-check the result by plotting each signal box on a satellite view of the area;

4: draw railway lines onto a pastel-shaded background map;

5: convert spreadsheet cell data into Draw files;

6: convert several hundred Draw files to PDF.

Chris Hall

When I started to look at Ireland, I

realised that no map tiles were readily

available on-line but there was a detailed

map available which showed old railway

lines (at URL http://www.railmaponline.com/
UKIEMap.php). This was, of course,

copyright and so could not be republished.

However I could, in principle, capture the

necessary data to allow me to trace lines.

A screen view of these maps included a

box showing the latitude and longitude at

the centre of the map. If I displayed a

map, did a screensave then just panned the

map to show an overlapping view, and

repeated this for the whole of Ireland, I

would have the data I needed.

I therefore captured this at the largest

scale that I could persuade myself to

undertake. This required 700 1920x1080

screen shots, each showing the position of

the centre of the view in latitude and

longitude.

Because I had kept the browser

window on the screen at the same position

throughout, I could write a programme to

read in each screen shot one by one and

generate a draw file showing the filename

and just that part of the screen shot that

showed the location. I turned this into a

PDF and did OCR to regenerate DATA

statements of the form:
DATA filename, longitude,latitude

Another programme (Ire_Lg21) took

each screen shot (sprite) in turn and

placed it into a Draw file wrapper (with

the screen shot(s) immediately above also

included to avoid gaps, using the latitude

and longitude of each to align them against

each other). It then rendered the Draw file

to screen using a transposition matrix to

rotate it and a screen graphics viewport to

crop it (after experimenting with the

‘DrawFile_Render’ SWI call’s cropping

matrix and finding it impossible to

understand) so that each 1km x 1km grid

square occupied 125 x 125 pixels on

screen. Each grid square was then

screensaved as a map tile.

It takes 103000 kilometre squares to

cover Ireland and the programme ran for

five hours overnight on my Iyonix to do

this. I repeated the process for the more

compact 3mkx3km and 6kmx6km squares

that I also needed.

I now had a 125x125 pixel 24bpp

sprite for each of the 103000 map tiles that

I needed and ‘just’ needed to convert them

into JPEGs. No problem I thought, I just

need a batch converter. After a bit of

searching, I wrote my own programme, in

BBC BASIC, to do this (using the GDI+

library, see later). Overnight it processed

the sprites and I now had the map tiles I

needed.

I repeated the tiling process on an out-

of-copyright map of Ireland – a sprite

6421x10573 pixels, some 259Mbytes in

size which I turned into 103000 JPEGS

each forming a 1kmx1km square.

Now I could proceed to stages 2 and 3

for Ireland (I had already done these stages

for some parts of Britain). However the

map tiles I had created to trace the lines in

Ireland could not be used for any other

purpose as they were copyright.

Using RiscOSM

I had purchased RiscOSM at the 2014

Wakefield show but had not started using

it until I saw it again at the 2015 Wakefield

show by which time it was able (for the

first time) to display Irish national grid

lines. My particular interest was to

produce 125 pixel square jpeg map tiles

3 � Article

Stage 1: Ireland and RiscOSM

covering either a 1km or 3km square

ortho-rectified to align with the National

Grid, initially for Ireland (and its new

ability to show grid lines would act as a

check on my method).

The first step was to generate a map

image where the area covered (latitude and

longitude) was known. I chose an A0

landscape size sheet with a 1:50000 map

and an A2 landscape size with a 1:100000

map (which both cover almost exactly the

same area). RiscOSM imports Open Street

Map data and allows you to export the

map area as a vector graphic 'Draw' file. It

also provides information about the

latitude along the top and bottom edges

and the longitude along the left and right

hand edges (via the 'MapInfo' menu item).

The latitude and longitude used by

RiscOSM is based on the WGS84/

ETRS89 spheroid model and is therefore

the same as those used by GPS devices.

Although the longitude value changes

linearly from left to right on the map, the

variation of latitude from top to bottom is

more complex as the central position has a

latitude that is not the average of top and

bottom. This is necessary to have a

constant vertical scale.

Conversion of the latitude and

longitude to national grid coordinates is

also complex. The first step is to transform

to the equivalent latitude and longitude in

the spheroid model that is used by the

National Grid (this is the coordinate

system used on OS maps to show the 5'

graticules of latitude and longitude which

therefore line up with the meridian at

Greenwich, which GPS devices do not).

Then another formula is used to tranform

to easting and northing grid coordinates.

I now know the variation of longitude

from left to right, have assumed that

latitude is about linear from top to bottom

and know how to transform to OSGB or

OSI grid coordinates. I also have a vector

graphic draw file which 'just' needs to be

skewed and scaled to suit and then

captured in 125x125 pixel squares.

There is an extremely useful OS

4 � Article

Something is wrong - the grid lines ruled by !RiscOSM (version 1.25) are too low (by about 100m at the

centre of the map) - about 30m of this error is from drawing straight lines rather than a curve but there's

something else as well that needs correction. By version 1.26 all was well.

routine called ‘DrawFile_Render’ which will

transform and render a draw file to the

screen using a transformation matrix

where the screen position (x',y') is given in

terms of the position (dx,dy) in draw units

as follows:
 x' = a.dx - c.dy + e and

 y' = b.dx + d.dy + f

For each km square the scale along the

y-axis sets d, the scale along the x-axis sets

a, the horizontal direction of the bottom

edge sets b/d and the vertical direction of

the left hand edge sets a/c. The screen

position of the bottom left hand corner

sets e and f. This gives the six parameters

of the transformation matrix.

What happens to the top and right

hand edges and the top right hand corner

then, you might ask. The answer is that

they will not be precisely rectangular and

the error increases according to the

number of grid squares you attempt to

capture in one plot. I calculated the error

at the top right as ~0.8 pixel with a

500x500 pixel plot (i.e. plotting 16 km

squares at a time). Initially I was capturing

6x9 squares at a time to make full use of

the screen size available - although this was

faster it increased the error.

There was scope for error in these

complex calculations and I introduced a

debugging step where a drawfile was

created covering exactly the same area as

the map produced by RiscOSM but just

having the corners of each 4km square

screen plot marked, with their latitude,

longitude and grid reference. I then

imported both into Artworks with a

SHIFT-drag and looked at how well the

overlaid markers lined up with the grid line

intersections produced by RiscOSM.

My assumption about latitude being

linear produced errors around the mid

height of the page. RiscOSM version 1.25

(1-May-2015) assumed that the horizontal

grid lines were straight from the left hand

edge to the right hand edge so there were

errors at mid width. I had also used

3.14159 for pi rather than the BASIC

function PI. Each of these produced an

error of around 40m-100m whereas I was

aiming at an error of about 1.2m (1 pixel).

It is interesting to note that the

shortest distance between two points on a

map based on latitude and longitude is not

a straight line but rather a curve following

the great circle through the two points. On

an Ordnance Survey map, the grid lines

each follow a great circle and so the

shortest route is a straight line.

RiscOSM was revised (version 1.26) to

plot grid lines more accurately so that

horizontal grid lines will appear slightly

curved. I have corrected my interpolation

of latitude to use a formula to interpolate a

function of latitude, f namely log(tan(f) +

1/cos(f)) and corrected 3.14159 to PI.

The overlaid grid intersections now align

to within a few metres. An error of ± 2.5m

corresponds to ± 2 pixels or ± 0.00005°

(longitude) or ± 0.00001° (latitude) and is

the best that can be achieved where

'MapInfo' gives four decimal places of

degrees.

In a couple of hours I managed to

cover the whole of Ireland with 85 vector

graphic images generated by RiscOSM

using a longitude interval of 0.7° and a

latitude interval of 0.3°. I noted down the

latitude and longitude at the top, bottom,

left, right and centre for each.

The first programme ('Ire_OSM20' is on

the monthly disc) takes each of the 85

draw files in turn. It then projects each

4kmx4km square on the map onto the

screen and captures the 16 km square map

tiles, each as a sprite 125 pixels square.

This takes about 8 hours on my ARMX6.

The programme 'SpritetoJPEG18.bbc'
runs under BBC Basic for Windows and

5 � Article

batch converts the 138702 map tiles that

were generated using 'screensave' as 62k

sprite files into jpeg images of just a few

kbytes each. This takes about 1½hours.

The programme is more functional then

polished but I've included it on the

monthly disc anyway.

A 1:50000 map projected to cover

1km in 125 pixels (i.e. at a zoom level of

175%) looks about right for the most

detailed tiles. I also needed coarser

tilescovering 3km in 125 pixels and a

1:100000 map (zoom 117%) looked right

for this. This time there were only 15022

tiles and it was much quicker.

The final product is a DVD-ROM

produced for the Signalling Record Society

titled 'Signal Box Register - volume 9

Ireland' which provides a map background

of Ireland against which is projected the

position of each signal box and a tracing of

every railway line built in Ireland.

Using version 1.29 (beta) of !RiscOSM

I was able, in a few days, to capture 206

A0 1:50000 and 206 A4 1:250000 vector

graphic images covering Great Britain (see

Artworks file Cov01) which I processed

into 330876 1km squares, 36322 3km

squares and 9239 6km squares, each

125x125 pixels. Version 1.29 adds an

optional text title to the captured map

making it unnecessary to type in the edge

coordinates as they can now be read from

the draw file - this speeded up the process

somewhat.

The map tiles can be seen on-line at

svrsig.org/Map1940s.htm with individual tiles

generated by the Perl script svrsig.org/cgi-
bin/map1.cgi?x=147&y=030 where x and y are

the grid coordinates of the map square in

kilometres.

Overall I found RiscOSM to be an

excellent piece of software and can

thoroughly recommend it.

Chris Hall chris@svrsig.org

6 � Article

The SW corner of England showing overlap of

maps, the filename '50356' indicates 50.3°N 5.6°W

at the centre has grid coordinates (116.032) km at

bottom left and (170,068) km at top right.

The finished map tile of the Penzance area.

Chris Hall

I had established, by now, the grid

references of many signal boxes using

manual methods (measuring from

reference points like tunnels on a printed

OS map). I was therefore able to use some

fairly simple Javascript to show the boxes

overlaid on a 1940s OS map – see

‘Superimposing on a map’. This manual

method was, however, rather tedious.

An article in Computer Shopper in

about 2007 described how to draw a

vector graphic line in a browser and so I

put together some javascript to track and

record mouse clicks. The clicks would be

over a set of map tiles, showing a 1940s 1”

Ordnance Survey map (and therefore both

open and closed railway lines), working

out the distance travelled along the line

and therefore the current milepost

mileage.

A suitable set of map tiles for England,

Wales and Scotland was readily available

on-line as part of a project to capture grid

references to match postcodes. As this

would be a tool to gather information it

would not need to be multi-browser

capable: the vector graphics example code

used a Microsoft library and the tracing

has proved to work only in Internet

Explorer 6/7 under Windows XP.

The mouse click positions are written

into a browser window and the result

captured (once tracing of the route is

7 � Article

Stage 2: Tracing Lines

The tracing starts at the point marked '1', with a second click at '2' and the mouse being moved to the next

point on the line ('3') with a red line showing the route to be traced between '2' and '3'. Blue dots show the

route behind (the quarter (•) and half (••) mileposts can be seen). It requires Javascript to display correctly.

complete) by using ‘view source’ and ‘save

page’. The format of the text file is an

Anquet ‘export’ format (.aef) which simply

lists the grid references of waypoints along

a route. This can be read directly into the

Anquet mapping software and displayed

and edited over a background of a modern

1:25000 or 1:50000 Ordnance Survey

map. This page on my website (http://
www.svrsig.org/Trace.htm) shows how this

works. As the route is traced it is written

into a separate window (see right) and the

result is a file that looks like this:
Anquet Maps,AEF,v2

RouteStart,"1",""

Waypoint,"0.00",151452,32940,0,"","00-
5",""

Waypoint,"0.00",151452,32940,1,"MP","-
006","MP 001-010"

Waypoint,"0.10",151258,32995,1,"","00-
7","MP 001-011"

Waypoint,"0.20",151065,33050,1,"","00-
8","MP 001-012" ...

It is a series of grid references of the mouse

clicks, with ‘milepost’ markers dropped

every ten chains so that you can see the

route you have just traced. Using Windows

XP and Internet Explorer 6/7, the view

shows a red line extending from the last

click to the current mouse position

indicating the line you are about to ‘draw’.

So far I have traced the whole of the Great

Western, Midland, LNER (south of

Doncaster), Southern, Scottish and

London Underground railways.

8 � Article

A better method using !RiscOSM - an identical view, with the mouse at ‘3’ but the steady red line follows

the railway (shown as a red dotted line where still open and grey where closed) this time, not the mouse. The

route already traced is shown in green with waypoints automatically generated to follow the railway.

3

Internet Explorer 7 vanishes

Suddenly I found that Windows XP

and Internet Explorer 6 were disappearing.

At first I built an XP compatibility box on

my Windows PC but I upgraded to

Windows 7 and it seemed sensible to find

a different method for tracing lines.

RiscOSM

RiscOSM provided the solution - it

can draw tracks from the last point to the

mouse (or the nearest point to it)

constrained to follow a footpath or railway

or road etc. making the job of tracing a

line much easier. Some abandoned lines

are discontinuous across a removed bridge

but that section can be filled in by forcing

a ‘jump’ across the gap using the CTRL

key.

RiscOSM allows the route to be

exported in GPX format (i.e. using

latitude and longitude) and !MultiTask

allows such an exported GPX route to be

converted to Anquet AEF format.

Chris Hall chris@svrsig.org

9 � Article

After a single mouse click, RiscOSM has extended

the route along the railway with extra waypoints so

that it follow the curves. Before these had to be done

manually.

Armed with the grid reference of each

signal box and the route followed by each

railway line, I knew that I would be able to

correlate milepost mileage with grid

reference. Another 'tweak' to the growing

BASIC programme would produce a

spreadsheet full of formulae that could

convert milepost mileage to grid reference.

No more manual methods!

The screenshot below shows the traced

line (actually from Welwyn where it left the

main line), the milepost mileage and the

calculated grid reference. This allowed me

to establish grid references for each signal

box.

These grid references needed to be

checked. Now I had obtained the tracing

of each line and worked out where each

box was located, I could show both lines

and boxes on a map background. URL

http://www.svrsig.org/gwmap/Map1940s.htm
shows this (it uses Javascript extensively

and many RISC OS browsers (including

Netsurf) cannot handle this.

The only features that were really

definitive on the map, that would confirm

that the method worked, were level

crossings.

An article in Computer Shopper in

about 2006/7 showed how to display

‘pushpins’ – a small graphic icon with pop-

up text – overlaid on a browser window

displaying an aerial view from Google

Earth. This would therefore be able to

show an aerial view, defined by latitude

and longitude, with icons showing the

position of signal boxes, defined by an

OSGB grid reference.

A few lines of javascript later, I had

added a ‘satellite view’ button but was

disturbed to find that, for example, the

location of Penzance signal box (which is

still open and can be seen clearly on a

satellite view) looked correct on the

Ordnance Survey map (so its grid

reference was right) but it was misplaced

on the satellite view.

Time for some research! The

10 � Article

Stage 3: Grid references

The highlighted cells are manual inputs - the milepost mileage where the tracing starts (18m4c) and ends

(37m78c). Column N is the milepost mileage of each location and the corresponding calculated grid

reference is in column P.

Ordnance Survey grid reference is based

on the OSGB36 (1936) coordinate system

and although I had used the recommended

(and highly complex) formulae to derive a

latitude and longitude from the grid

reference, this was also based on the

OSGB36 coordinate system. I discovered

that the latitude and longitude used by

Google Earth (and satellite navigation

systems) is based on the more modern

WGS84 (1984) system. Although the error

is ‘only’ a few hundred yards (more in

Scotland), that looks quite big when the

satellite view can be expanded so that a

few hundred yards fills more than the

whole computer screen!

GPS systems are worldwide: local

coordinate systems define the angular

momentum of ‘local’ tectonic plates to be

treated as zero. Conversion between the

two requires another complex formula and

Penzance box suddenly appeared in the

right place.

Chris Hall chris@svrsig.org

11 � Article

Chris Hall

I now have a list of grid references defining

the route of each railway line, a list of

signal boxes, each with a grid reference,

and a scan of an out-of-copyright map of

England which is 4588x5836 pixels, some

100Mbytes in size.

I therefore wrote a programme

(MapIoM46) in BASIC to look at a list of

lines along with their traced route, which

defined a bounding box. It then worked

out a suitable part of the scanned map to

cover the right area. It then reads this into

a user sprite area, washes out the colours

to pastel shades and surrounds it with the

necessary draw file headers. Each line was

then plotted as a vector graphic the result

saved as a Draw file. Each Draw file forms

a page in the book.

Because the sprite was a scan of a

map, the gird references at each corner

had to be estimated and the line drawing

skewed and scaled to fit. Old maps didn't

bother to show the route of railway lines

(or anything else) very precisely so this was

essentially a compromise.

Reading the resulting draw file into

Artworks, generates a PDF which includes

an RGB JPEG with CMYK process

colours given to the vector lines (done by

ArtWorks on draw import). The PDF is

suitable for commercial printers (they

tolerate RGB JPEGS but complain about

RGB process colours).

I now had the coloured map pages for

the book.

Chris Hall chris@svrsig.org

12 � Article

Stage 4: Drawing Lines on a Map

MX 001 : T1

MX 002 : T2

IM 001 : T3

IM 002 : T4

IM 003 : T5

IM 004 : T6

IM 005 : T7

T8

Principal lines

Section T: Isle of Man

T9

 List of lines in Section T: Isle of Man

T1 MX 001 Douglas to Ramsey

T2 MX 002 Laxey to Summit

T3 IM 001 Douglas to Ramsey

T4 IM 002 Douglas to Port Erin

T5 IM 003 Foxdale to Kirk Michael

T6 IM 004 St Johns to Peel

T7 IM 005 Knockaloe Branch

T8 ------ Lhen Coan to Sea Lion Rocks

T9 ------ Laxey to Adit

This image appears in the book to introduce Section T - the lines on the Isle of Man.

Chris Hall

I now realised that converting a

spreadsheet of row/ column/ text entries

was a bit daunting. I was, pretty much,

having to do all the text formatting and

justification that a browser would do. The

programme (ReadReg089) did actually

work - a mere 1542 lines of BASIC.

However I did need to create a RISC

OS Arial font, using the excellent !effTTT

TrueType font Translator from the

Electronic Font Foundry and use !FontEd

to add some special characters (eighths

fractions and feet and inches marks).

The row/ column/ text spreadsheet is

shown in the screenshot below - this is not

designed for reading or editing, just for

processing. It may have hundreds of

thousands of rows (and Excel 97 won't

even load it).

The corresponding extract from the

spreadsheet and the relevant page (page

188) in the book (Volume 9 Signal Box

Register Ireland) are shown below.

Chris Hall chris@svrsig.org

13 � Article

Stage 5: Draw files - hundreds

Part of the same page from the finished book.

The rather incomprehensible spreadsheet defining where on the page each cell should be placed.

Chris Hall

I have tried several methods of producing

PDFs to be sent to commercial printers

and have settled on one method which

seems to work best. I had two principal

source documents - one was a multi-page

book generated from a set of data using a

BBCBASIC for Windows programme and

some source spreadsheets and one was a

single page coloured map, produced using

!MakeDraw. The method for each was

different and I'll describe them separately.

Single page coloured map

The coloured map itself is produced as a

draw file from BASIC from a scanned out-

of-copyright map of England, Wales and

Scotland in the early 20th Century,

Anquet 'AEF' route files of every railway

line in the book and a note of which lines

to show on the page. I produced a PDF

from the draw file by using !ArtWorks to

'Export/PDF' setting 'include fonts' to

ensure they were embedded. Producing a

single PDF from a single draw file was

reliable and proved satisfactory for

printers.

This was because all the vector graphic

lines in the draw file were automatically

converted to CMYK process colours on

import to ArtWorks (a bit colour saturated

as K was wrongly set to zero). Although

the embedded jpegs were RGB, this was

apparently tolerated by most printers (one

supplier has a fussier printer and runs an

expensive version of Acrobat to convert

the RGB jpeg images to CMYK for me).

Multi-page book

Initially (in 2006) I produced the data in

the form of an HTML master, created

using BBC BASIC, containing nested

tables with css formatting to specify page

breaks and cell borders. Producing a PDF

was simply (!) a case of loading the master

into IE6 with very specific page borders

and printing to Adobe Acrobat Standard

8.3 with options to embed text fonts and

to use 'high resolution'. This got more and

more complex as I was having to second

guess the browser about some of its

formatting and, particularly, how much I

could get on one page before adding page

number and forcing a page break (using

css).

At this stage I could include any

characters so long as I made sure to

convert any top-bit-set characters to their

HTML equivalent. I had to work out how

Excel 97 stored these characters in csv files

saved from it (various things like eighths

fractions, feet and inches marks, sexed

quotes etc.). However any 'windows

update' that updated IE6 might change the

formatting subtly and affect my page

breaks. Also I found that if you had too

many (more tham 100 or 200) jpeg or gif

images on the HTML master then not all

would necessarily be rendered. Fine on

screen but useless for a book.

When IE8 was produced it was so

buggy that it wouldn't even load my 450

page HTML document (7.3Mbytes) at all,

just crashing. It had 16402 internal

HTML links and 990 nested tables, each

having individual css-defined borders. I

had to split the document into two or

more parts to make sure that all pictures

would get rendered.

Having already produced a tabular

document, using HTML markup for the

cells and css formatting for whether it had

ruleoffs above, left and right of the cell and

what font was required, in a BBCBASIC

programme, I decided that it would be

relatively simple to produce a spreadsheet

14 � Article

Stage 6: Producing PDFs

instead, each line identifying page number,

leftmost cell cloumn, rightmost cell

column, highest cell row and lowest cell

row followed by css format type for the

cell, css format type for the text and then

the text itself. The result was a csv

spreadsheet which had 123230 lines of

such entries.

All I had to do was to write a

programme that would produce an

individual draw file for each page,

justifying the text within the cell it

occupied, spacing adjacent cells

appropriately, include jpeg pictures at a

specified dpi (on the finished page) or size.

I therefore created an Acorn 'Arial' font

(using the Windows font 'Arial' and the

!EFFTTT (true type translator) to create

the font and !FontEd to add eighths

fractions and feet and inch marks) and

wrote the programme. Now the two forks

have converged.

Hundreds of draw files

Now I have 450 draw files, all produced

using BBC BASIC, which form the book. I

need a new method of producing PDFs

because, even though Martin Wuerthner

produced a trial version of ArtWorks for

me (the South West show was rather quiet

that year and he did this during the show!)

that would allow me to drag all 450 draw

files onto ArtWorks and place each one on

a new page automatically (provided I held

down the CTRL key throughout -

sellotape helped here a lot) it took so long

(and filled memory after about 12

coloured pages, some of which were about

40Mbytes) that it became too difficult.

I have the Postscript 3 printer drivers

which can produce a postscript file if you

print something under RISC OS. First set

up the driver to produce the postscript as a

file:

15 � Article

Drag a draw file onto the postscript

printer driver icon and a postscript file

'postscript/ps' is produced wherever you

specify. The (slightly obscure) command

inside a BASIC programme:
SYS "Wimp_StartTask","ps2pdf13
"+FNUnix(LEFT$(pout$,LEN(pout$)-
11))+AwaitFile$+".ps
"+FNUnix(LEFT$(pout$,LEN(pout$)-
11))+AwaitFile$+".pdf"

will convert this file to a PDF 'postscript/

pdf'. All I need is something that will do

that for a directory full of draw files,

dragging each in turn to the icon, waiting

for the 'postscript/ps' file to be created,

rename it to the leafname of the last

dragged file plus '/ps', convert it to a pdf

with same leafname and then repeat until

all files have been dragged.

What does this look like?

16 � Article

With the application !MultiTask

running (the yellow icon on the icon bar),

a click on its icon bar icon will open the

window displaying file contents.. First drag

the 'printout/ps' file icon onto it (so that it

knows where to look for each postscript

file) as shown by the green arrow. Then

drag a draw file from another directory

which contains many other draw files

(cyan arrow). Then click MENU over the

window and drag the 'PrintPDF' file icon

onto the postscript printer icon (red

arrow). The filer window 'Dev' will fairly

quickly fill up with 'pdf' and 'ps' files

created from each draw file and you will

have converted all the draw files to PDFs.

Use Adobe Acrobat Standard to make a

single multi-page PDF from the individual

page PDFs.

If you want to convert an Impression

file into a PDF, then simply select the

print driver and print from Impression -

this creates a file 'postscript/ps'. Then run a

short BASIC programme in a task window

(!MultiTask will automatically set the

USD to the directory containing the

BASIC programme and the 'postscript.ps'

file just produced) which contains:
SYS "Wimp_StartTask","ps2pdf13
printout.ps printout.pdf"

and the printed output from Impression

will become a multipage PDF.

What problems did I encounter?

The special characters (such as sexed

quotes, fractions, feet and inches marks

etc.), stored in Excel 97 or Word 97 as

top-bit-set characters, had been translated

in stage 5 and so appeared correctly in the

final PDF. Some images, however, caused

me a lot of difficulty.

RISC OS 5 uses 'new format' sprites

containing low colour depth (8bpp and

lower) extensively but Publisher cannot

print them (but displays them correctly on

screen). ArtWorks refuses to load them

and even if you sneak them in inside a

Draw file, will not display them. Strangely

though, it prints them correctly. However

it will not export them to PDF, giving an

error.

I nearly tried using text area objects

but quickly discovered that despite being

part of the Draw specification since before

1992, neither ArtWorks nor Publisher

could display them, ArtWorks would error

and show garbage text.

Only in the latest update for

Impression-X (so I am told) can it accept

JPEG objects embedded in a Draw file (or

dragged onto a window) - these were

added to the Draw specification with

RISC OS 3.60 in 1995.

I have therefore produced a Draw file

(DrawEx) with all these difficult objects as

an example, see below.

Chris Hall chris@svrsig.org

17 � Article

