
Introduction

I have seen various friendly ways of
displaying a PDF on the internet,
particularly where it contains a catalogue
and you only need to find the relevant
page. A pair of left- and right-hand pages
are usually shown with turned up corners
to allow you to move forward and back a
few pages. Also an index with hot links to
the relevant page.

Some have neat graphics showing a
page being turned. So what I wanted was a
file full of page images, which RISC OS
could render, derived from a PDF file with
added links.
First stage

The first stage was to extract the
contents of a PDF file in a form that could
be held in memory as individual pages and
rendered, on demand, by RISC OS: the

obvious format was as Draw files.
At this stage the simplest approach

would be a large Draw file that would
render as an image of the background (the
open covers of a ring-bound file) and
could be held in memory, with individual
pages held within it, each as a Draw file.
Pointers in the Draw file would indicate
where the Draw file for each page began
and ended.
Can this be done in a ‘Draw’ file?

Yes. You can hide data inside a ‘tag’
object within a Draw file. The hidden data
within a ‘tag’ object comprises a single
‘ordinary’ draw object (which is rendered),
a ‘tag’ number and an arbitrary number of
bytes of data, padded to a word boundary.
Data within a tag object of a particular tag
number are recognised by the application
that owns that tag number.

1 Article on RingBind

Displaying documentation

!RingBind

This application displays a manual as if

it were a ring-bound manual, open on the table.

It recognises files of type 'Bound' (&1EB) and will open

such files if they are double-clicked or dragged

onto its icon bar icon.

Click on the bottom corner to turn a page

Use Adjust for animation or Select for speed.

Click on tabs to move to new section

<<< << < > >>>>>•

Cover
page

#1
Installation

#2
Linking

#3
Equasor

#3
 Contents

#3 Using
 Equasor

#3
 Tutorial

#3 Icon Bar
 Menu

#3
 Index

#4
TableMate

#5
WordWorks

#6
SepEd2

The background image showing turned corner, index tabs and ring binding, with the cover page added.

1

http://www.riscosdev.com/

info@riscosdev.com

 Guide to the

Impression Suite

Installation of Impression-X and Style

Linking vector graphic images

An Equation editor − Equasor

A table editor − TableMate

A dictionary and thesaurus − WordWorks

(also known as HyperView)

A separation curve editor − SepEd2

If you include a ‘tag’ draw file object
(object type 7) after the font table object at
the start of the Draw file, it has the same
format as other draw objects and its
object-specific data comprise a tag
identifier word (numbers allocated by
ROOL), followed by a single draw object
and then by a tag-dependent amount of
data, the lengths of the draw object and
the tag object thus allow extra space to be
‘hidden’ between them.

When a ‘tag’ object is rendered, then

the object within it is rendered. As that can
be a group object, itself containing an
arbitrary number of objects, you can put
the whole Draw file, apart from the font
table, inside a tag object.

In the columns below is an example
where the background image is a large
Draw file containing all the individual

2 Article on RingBind

Above left: ‘Bound’ file is either loaded as a whole (0000-pppp) or part (0000-ffff) plus relevant pages

Above right: Content of a ‘generalised Bound’ file (type &1EB) which can be rendered as a Draw file

offset � data
0000 � Draw file header
000C � ‘Bind’
0010 � ffff offset to end of first tag
0014 � qqqq max page size
0018 � Draw file bounding box
0028 � 0000 (font table object)
002C � aaaa length of font table
bbbb � 0007 (tag object)
bb04 � cccc (length of tag)
bb08 � bounding box
bb18 � tag # &1401
bb1C � 0006 (group object)
bb20 � dddd (length of group object)
bb24 � bounding box & name of group
bb40 � Draw objects to render backgnd
....
eeee � hidden bytes inside tag
ee00 � 0000,00mm,00ww,00hh
ee10 � 0001,z0nn,ptr1,ptr2
ee20 � 0002,z0nn,ptr2,ptr3
....
een0 � 00nn,z0nn,ptrn = kkkk,pppp
ffff � 0007 (tag object)
ff04 � gggg (length of tag)
ff08 � bounding box (all zero)
ff18 � tag # &1402
ff1C � 0006 (group object)
ff20 � 0024 (length of empty group)
ff24 � bounding box (all zero)
ff34 � name of group object (12 char)
ff40 � Draw file for page 1
jjjj � Draw file for page 2
....
kkkk � Draw file for last page
pppp � End of ‘Bound’ file

�

�

�

�

�

�

	

�

�

memory blocks:
� 40 byte header - gives main parameters
� font table object, length aaaa = bbbb - 0028
� tag &1401 object, length cccc = ffff - bbbb
� group object, length 0024 = ff40 - ff1C
� Draw file for page 1, length = ptr2 - ptr1
� Draw file for page 2, length = ptr3 - ptr2
	 Draw file for last page, length = pppp - kkkk

 tag &1402 object, length gggg = pppp - ffff
� Valid Draw file, 0000 to ffff
� Valid Draw file, 0000 to pppp
Note:
bb04 = bbbb + &0004
cccc = ffff - bbbb = (nn+1)*&0010
eeee = bb1C + dddd
mm = margin in draw units
nn = maximum page number
ww = maximum page width in draw units
hh = maximum page height in draw units
ptrn = start of Draw file for page n
ptr1 = ff40 = bbbb + cccc+ &40
z - bits 30, 29, 28 mark odd pages where
chapter, section or sub-section start

4 bytes = object type
4 bytes = object length
16 bytes = bounding box of object
object-specific data

The format of a draw object.

Note that all object types except 0 (font table) have
space reserved for a bounding box.

pages as separate Draw files with pointers
to the offset inside the file where each page
starts and ends.

If the whole ‘Bound’ file can be
accommodated in the available Wimpslot,
it is clearly faster to do this and it will
appear, as a whole, as a valid Draw file. In
this case the pointers to each page simply
point directly to memory as an offset from
where the ‘Bound’ file was loaded. The
‘Bound’ file can, however, be quite large.

In most cases it will be more efficient
to keep the ‘Bound’ file open and load just
the first part (from 0000 to ffff, which
renders as the background and will also be
seen, as a whole, as a valid Draw file) and
then load just four pages at a time into
memory using the pointers as offsets into
the ‘Bound’ file, from which a section of
the file can be selected for loading into
memory, as and when required.

Two pairs of pages will normally be
loaded: the left hand page and the
following page as well as the right hand
page and the preceding page. This
provides the data for turning pages
forward and backward.

An example should make this clear: let
us consider a move from pages 2 and 3 to
pages 14 and 15. From now onwards I’ll
refer to a pair of pages by the odd page
number, the even page being that
preceding it. First the pointers will be set
up so that the left hand pair of pages is
page 3 and the right hand pair is page 15.

Pages 2 and 3 are on view and as the
move takes place, page 3 lifts and narrows,
revealing page 15 below it. As it turns
over, page 15 will be fully uncovered and
page 14 will start to obscure page 2. On
completion the right hand pair of pages,
page 15, will be the only pages visible.

On a backward move, it will be the left
hand pair that remain visible.

Provided the pointers to the page data

and the page data themselves are changed
in a single operation, then they will be
valid for the next redraw request. This
implies that a call to SYS “OS_GBPB” (to
load page data) will not be interrupted by
a redraw request.

Turning forward shows (for example)
pages 2 and 3 with page 3 lifting and
narrowing to reveal page 5 beneath and
then page 4 widening to obscure page 3
until just pages 4 and 5 are shown.
Making a start

Let’s not worry about using lots of
RAM at this point. I wanted to have a
‘background’ image that looked like the
open covers of a ring-bound file onto
which a left and right hand page would be
rendered. A single Draw file including a
background image with space inside it
where the individual Draw files for each
internal page could be hidden looked like a
good start.

Using SYS “DrawFile_Render” with
pointers to the start and end of the whole
‘Bound’ file (0000 to pppp) held in
memory would render the background and
with pointers set to the start and end of a
particular page, then just that page would
be rendered.

Version 0.06 of !RingBind does just
this. On Virtual Risc PC (or on 32 bit
platforms with Aemulor running) it cannot
therefore show the larger manuals. Version
0.10 of !RingBind will use less memory if
the ‘Bound’ file permits this and should
therefore run on VRPC.

Running the application !RingBind (by
double-clicking its icon in ‘Apps’ for
example) will load it with a Wimpslot
between the minimum and maximum
setting in its ‘!Run’ file according to the
current value of the ‘next’ slot.

Double-clicking a ‘Bound’ file uses the
normal RISC OS protocol to offer a
message to any application that can load

3 Article on RingBind

such a file: if !RingBind is running and has
a large enough Wimpslot for the ‘Bound’
file concerned, either to load it in full or
just the parts necessary, it will accept the

message and load and display the file.
If the message is ignored, then the

!RingBind application will be executed and
then has an opportunity to request enough
memory to load the file in its entirity or,
failing that, to load just the necessary
parts. If there is still insufficient memory
available it will abort with an error
message.

Memory usage in version 0.10 will
thus be confined to being able to load the
first part of the ‘Bound’ file (from 0000 to
ffff, about 30k depending how many ‘tabs’
are shown) as well as hold four pages in
memory, space for the largest page (qqqq)
is allocated for each, about 6Mbytes in
total, in a continuous block so that two or
four pages can be loaded in a single
operation using OS_GBPB.
Creating a ‘Bound’ file

The first step is to create a directory
full of Draw files, one for each page. This
can be done using !PDF in a single ‘save’
operation.

The second step is to identify where
each Chapter, Section and sub-section
starts and ends, so that the three levels of
‘move forwards’ and ‘move backwards’
will work. Clicking the page corner will
move two pages forward or back.

In the column to the left, the byte at
4CCB (&70) says that page 1 marks a
Chapter, Section and sub-section break,
with the three relevant bits set.

The generation programme
‘ManGen9’ requests the name of the
directory where the Draw files are stored
and expects to find a LIBRARY file there
called ‘ManualData’ which will state the
number of pages etc.

The individual pages are examined to
determine the largest page width and
height and the largest size of a single page.

The ‘Bound’ file (which renders as a
Draw file showing just the background

4 Article on RingBind

offset � data
0000 � Draw file header
000C � ‘Bind’
0010 � 7364 offset to end of first tag
0014 � 134FF4 max page size
0018 � Draw file bounding box
0028 � 0000 (font table object)
002C � 001C length of font table
0044 � 0007 (tag object)
0048 � 7320 (length of tag)
004C � bounding box
005C � tag # &1401
0060 � 0006 (group object)
0064 � 4C54 (length of group object)
0068 � bounding box & name of group
0084 � Draw objects to render backgnd
....
4CB4 � hidden bytes inside tag
4CB4 � 0000,1680,56833,6FB66
4CC4 � 0001,7000026A,73A4,122948
4CD4 � 0002,26A,122948,145124
....
7354 � 26A,26A,08BAB43C,08BAB808
7364 � 0007 (tag object)
7368 � 08BA44A4(length of tag)
736C � bounding box (all zero)
737C � tag # &1402
7380 � 0006 (group object)
7384 � 0024 (length of empty group)
7388 � bounding box (all zero)
7398 � name of group object (12 char)
73A4 � Draw file for page 1
122948 �Draw file for page 2
....
08BAB43C �Draw file for last page
08BAB808 �End of ‘Bound’ file

�

�

�

�

�

�

	

�

�

A specific example of the internal format of a
‘Bound’ file. The part of the header at 000C
identified by the word ‘Bind’ has been introduced so
that loading just the first 40 bytes is enough to
determine the memory requirements to load the
background image and four pages of content.

image) is thus created. For the RISC OS
5.28 User Guide this created a ‘Bound’ file
of some 628 pages and about 140 Mbytes
in size, with a maximum page size of
1236k.

To load just the background image
and four of the pages of content would
require a Wimpslot of just 10Mbytes.
Version 0.06 of !RingBind simply loads the
whole ‘Bound’ file into memory and thus
requires a Wimpslot of about 150Mbytes

to load the RISC OS 5.28 User Guide -
this now seems a trifle excessive.

However the simple approach meant
that I was quickly able to render two
adjacent pages onto the background image
using the simple redraw routine below. I
could recognise a click over the bottom left
or right hand corner of a page and display
two pages further on or two pages back.

5 Article on RingBind

 1400 : SYS “Wimp_RedrawWindow”,,block% TO flag
 1410 : zoom=zoomL
 1450 : WHILE flag
 1460 : x1c%=block%!28-block%!4+block%!20
 1470 : y1c%=block%!32-block%!16+block%!24
 1480 : x2c%=block%!36-block%!4+block%!20
 1490 : y2c%=block%!40-block%!16+block%!24
 1500 : cx%=block%!4-block%!20
 1510 : cy%=block%!16-block%!24
 1520 : REM This specifies the window position on screen in OS units
 1530 : sx1%=block%!4:REM block%!4=screenXmin (L)
 1540 : sy1%=block%!8:REM block%!8=screenYmin (B)
 1550 : sx2%=block%!12:REM block%!12=screenXmax (R)
 1560 : sy2%=block%!16:REM block%!16=screenYmax (T)
 1580 : scx%=block%!20:REM block%!20=scrollX
 1590 : scy%=block%!24:REM block%!24=-scrollY
 1730 : duX%=ddReg%!24:
 1740 : duY%=ddReg%!36:
 2640 : REM Now render it (page 2 on L, page 3 on R)
 2650 : !ddtran%=&10000*zoom
 2660 : ddtran%!4=0
 2670 : ddtran%!8=0
 2680 : ddtran%!12=&10000*zoom
 2730 : ddtran%!16=-(ddReg%!24)*zoom+256*cx%
 2740 : ddtran%!20=-(ddReg%!36)*zoom+256*cy%
 2750 : REM brown background
 2760 : SYS “DrawFile_Render”,0,bufmd%,[hhhh]-bufmd%,ddtran%
 2770 : REM LH page
 2780 : ddtran%!16=-(ddReg%!24)*zoom+256*cx%+[mm]*zoom
 2810 : ddtran%!20=-(ddReg%!36)*zoom+256*cy%
 2820 : SYS “DrawFile_Render”,0,bufmd%+[ptr2],[ptr3]-[ptr2],ddtran%
 2840 : ddtran%!16=-(ddReg%!24)*zoom+256*cx%+[pw]*zoom+[mm]*zoom
 2850 : ddtran%!20=-(ddReg%!36)*zoom+256*cy%
 2860 : SYS “DrawFile_Render”,0,bufmd%+[ptr3],[ptr4]-[ptr3],ddtran%
 2960 : :
 2970 : SYS “Wimp_GetRectangle”,,block% TO flag
 2980 : ENDWHILE

Right: the adjustment to show an image of a right
hand page being turned to the left as theta rises from
0 to PI/2.

Below: the redraw code to show the background
with left and right pages superimposed.

 b=(1<<16)*0.1*zoom*SIN(theta)
 LOCAL ERROR
 ON ERROR LOCAL shift%=shift% OR 8
 IF shift% AND 8 THEN b=0
 !ddtran%=(1<<16)*zoom*COS(theta)
 ddtran%!4=b
 ddtran%!8=0
 ddtran%!12=(1<<16)*zoom
 SYS “DrawFile_Render”,0,frm,end,ddtran%
 RESTORE ERROR

The background image is sized so that
two pages from the PDF, side-by-side and
touching, will have a small margin around
their outside edges, except that there is
extra space at the right hand edge for
‘index tabs’ that will jump to a specific
page. Most (if not all) of the pages will
have a blank border, i.e. the objects drawn
on the page will not extend to the edge.

The bottom left- and right-hand
corners of the page area on the
background image will show a turned-up
corner. This is inside a named Draw
‘group’ object (type=6). If the manual is
shut, so that only its cover is in view, there
will be no LH page and the draw object
type for the bottom left will be altered to
&4C0 (invisible named group object,
another allocation from ROOL) so that the
turned-up corner disappears.

The group objects containing the
turned-up corners are named ‘Fwd’ and
‘Back’. The group objects for each ‘index
tab’ are named ‘Tab_00nn’ where ‘00nn’
is the odd page number to jump to.

Within an individual Draw file for a
particular page, a group object named
‘PRef_00nn’ would be treated as a
‘hotlink’ to page 00nn, if clicked upon.

It is easy to tell if the mouse is over a
particular named group object by
examining the bounding box of all group
objects and finding the smallest box that
encompasses the mouse position and then
reading its name.

The group objects ‘Fwd’ and ‘Back’
simply move two pages forward or back
when clicked upon.
Animation

It would be nice to display a page
being turned - for the right hand page all I
would need to do was to alter the first four
elements of the transformation matrix to
show a page being turned, its width
shrinking and its right hand edge rising as

it turned.
 As it got to the vertical, the other side
of the page would be seen, its width
extending until it covered the view of the
previous page.

The complicating factor here was that
two screen banks would be required so
that the Draw file data could be rendered
to one bank while the other bank would
respond to redraw requests. Swopping
both banks and forcing a redraw would
then display the updated view with the
minimum of flickering.

Version 0.15 has improved error
handling: most errors now restore a single
screen bank before reporting the error so
that the error window is visible. A mode
change is recognised so that it knows
memory for a second screen bank has been
withdrawn - any animation is immediately
terminated. Error trappping now detects
errors generated by an attempt to plot a
skew JPEG and plots it unskewed.

This version also uses a much smaller
WimpSlot, approximately 12 Mbytes -
enough to hold the background image and
four of the largest page images. It therefore
runs on VRPC and it will handle ‘Bound’
files larger than 512 Mbytes.

With version 0.15 is a copy of the
programme to generate a ‘Bound’ file from
a PDF, with full instructions. It is available
from !Store along with the RISC OS 5.28
User Manual, which has now been
released under the Apache licence, as a
‘Bound’ file.

An animated view of the page turning
can be seen on my web site at:
https://www.svrsig.org/software/RingBind.htm.
This is somewhat slicker and faster than
RISC OS can manage on older hardware
(it has been captured by a series of
screenshots and then combined into an
animated gif file) but on ARMX6, Pi4 and
Titanium it works at about that speed.

6 Article on RingBind

So to produce this piece of software I
have had to request allocations from
ROOL for application name (!RingBind),
filetype (Bound, 1EB), draw object (4C0)
and draw tags (&1401, &1402) all of
which were granted very swiftly for which I
am very grateful.
Points to note

The last draw object before the hidden
bytes at eeee is a group object called ‘Now’
containing a text object which is a single
‘bullet’ character with a bounding box
encompassing the whole slider bar but
rendered at the appropriate point to mark
the position within the document.

Rendering Draw file data using the
DrawFile_Render SWI (as !RingBind
does) can produce odd errors - for
example ‘(Number)’ if a font is not
present or ‘System variable SCSI$Path not
found’ if trying to plot a skewed JPEG.
The latter error is trapped and resolved.

Creating a PDF using the Postscript
level 3 drivers will have all fonts embedded
as type-1 fonts rather than as lower quality,
named, type-3 fonts with font mapping to
specify names for other operating systems.
Use only Corpus, Homerton and Trinity
fonts so that !PDF will render them
correctly and output Draw files that will
render on RISC OS. This also applied to
fonts used within images in the document.

!FontFX can be used to convert text in
non-standard fonts to paths.
Chris Hall chris@svrsig.org

7 Article on RingBind

