
Background

We are used to a standard sector size

of 512 bytes. Originally discs were simply a

sheet of magnetic material that was spun at

3600 or 7200 rpm. The start of each

sector on a track was marked by a special

magnetic ‘marker’ and 256 or 512

(sometimes 1024) bytes were read or

written a short time after this passed by the

head. There was room for about 16 sectors

on a track.

A single-sided disc had room for

perhaps 35 tracks and the ‘address’ of

some data was therefore composed of track

number (0 to 34) and sector number

(either 0 to 15 or 1 to 16). Double sided

discs had also the head (0 or 1). Hard

discs had a platter of discs with multiple

heads and a disc address was thus now

composed of a ‘CHS’ address, cylinder,

head and sector.

FileCore (from RISC OS 3.80) used a

19-bit value (idlen=19) to identify a disc

object, so there can be no more than 219

objects, each requiring 20 bits in the map,

to allow for the extra terminating bit. The

granularity of a partition is the minimum

separation between each disc object, given

by the formula (idlen + 1)*LFAU. There

can be no more than 2idlen objects in the

partition. This sets the minimum value of

LFAU which is one parameter chosen

when formatting a partition.

The granularity of a 256GB partition

is 640k (idlen=19) or 176k (idlen=21).

The Large File Allocation Unit

(LFAU) is the internal space allocation

unit for large files. This can be increased

above the default to give improved

performance but at the expense of

consuming more space per file (wasting on

average about half the LFAU for each

large file).

Detail you can ignore

Device drivers typically use a 29-bit

addressing method to identify a particular

sector within a partition (plus 3 bits to

identify the disc drive). A partition using

4k sectors can be up to 2TB (=229 x 4k).

RISC OS 5.22 extended the maximum

sector size to 4k (maximum partition size

now 2TB). RISC OS 5.24 extended idlen

to 21 bits so the granularity of a 2TB

partition became 1408kB and on a 256GB

4k disc became 176k.

An alternative to the ‘CHS’ address is

the ‘LBA’ address - this is just a 29-bit

value giving the sector number.

Conversion between ‘CHS’ and ‘LBA’

(Logical Block Addressing) addresses is

simple arithmetic:

LBA = ((C * N) + H) * SPT) + S - 1

where N is the number of heads (max.

255) and SPT is the number of sectors per

track (max 63). Note that C is a 10-bit

quantity (0 to 1023), H is 8-bit (0 to 255)

and S is 6-bit (1 to 63).

Where a hard disc is partitioned the

512 bytes at CHS (0,0,1) = LBA 0 identify

where each partition starts and how big it

is. FileCore ignores this partition table and

stores its 512 byte boot block &C00 bytes

from the start which is CHS(0,0,7) = LBA

6 (with 512 byte sectors).

A disc object can store more than one

file or directory.

1 �Article on SSDs

What are 4k discs?

Partition size Min. LFAU Granularity
(512)

Granularity
(4096)

idlen

16GB = 2
34

2kB = 2
11

40k = 80s - 19

128GB = 2
37

16kB = 2
14

4kB = 2
12

320k = 640s
88k = 176s

= 80s
= 22s

19
21

256GB = 2
38

32kB = 2
15

8kB = 2
13

640k = 1280s
176k = 352s

= 160s
= 44s

19
21

512GB = 2
39

64kB = 2
16

16kB = 2
14

- 1280k = 320s
352k = 88s

19
21

1TB = 2
40

128kB = 2
17

16kB = 2
14

- 2560k = 640s
704k = 176s

19
21

2TB = 2
41

256kB = 2
18

64kB = 2
16

- 5120k = 1280s
1408k = 352s

19
21

16GB: LFAU >= 234 ÷2idlen ÷ (idlen+1) i.e. 1.6k,

so LFAU can be 2k/4k ...

Solid state discs

NVMe and SATA discs are pretty

much all supplied with geometry that uses

512 byte sectors. Some actually arrange

data in 4096 byte units and emulate a disc

with 512 byte sectors. Some NVMe drives

using 512B sectors can be switched to use

4096B sectors and reformatted.

SATA drives for RISC OS using 4k

sectors are nothing new, you’ve been able

to use such drives since 2017 (on

Titanium at least, due to updated ADFS

and SATADriver modules). Elesar has

carried stock of preformatted 2TB SATA

drives since April 2018 as a spare part.

There are two advantages in switching

to 4k sectors for RISC OS: it increases the

maximum partition size from 256GB to

2TB and, in the case of NVMe discs,

offers very much improved performance

for random reads and writes (two or three

times the speed than on the same NVMe

drive with 512B sectors - roughly equal

speed to SATA drives).

The incentive to use 4k SATA drives

on RISC OS has however been muted as a

256GB partition is enough for most users.

So now that we have a strong incentive

to use 4k NVMe discs (much faster than

with 512B sectors), how easy is it to switch

them to 4k?

For this we need Linux, which

provides a set of nvme utilities:

Switching to 4k

There are two ways to switch an

NVMe drive from 512e to 4k - in RISC

OS using some software called

NVME4kFmt (still in beta development)

or in Linux, as described below.

Switching a drive to or from 4k sector

size destroys all the data on the disc. Once

the switch has been done, the driver needs

to be formatted again.

2 �Article on SSDs

RISCOSmark 2.06 (29-Mar-2016) by Richard Spencer 2003
Filing system: NVMe:HardDisc4.$.SpeedTests sector size=512B LFAU=4k partition=110GB
HD Read - Block load 8MB file 165415 42%
HD Write - Block save 8MB file 270415 20%
FS Read - Byte stream file in 1050 21%
FS Write - Byte stream file out 1558 30%

Filing system: NVMe:HardDisc4.$.SpeedTests sector size=512B LFAU=32k partition=110GB
HD Read - Block load 8MB file 194661 49%
HD Write - Block save 8MB file 281098 21%
FS Read - Byte stream file in 2937 60%
FS Write - Byte stream file out 2967 58%

Filing system: NVMe:HardDisc4.$.SpeedTests sector size=4k LFAU=8k partition=240GB
HD Read - Block load 8MB file 192752 48%
HD Write - Block save 8MB file 270415 20%
FS Read - Byte stream file in 4216 86%
FS Write - Byte stream file out 4347 85%

percentages are proportion of RAMfs speed

Speed comparisons using the same NVMe drive with different formatting options, as shown.

sudo apt install nvme-cli
sudo nvme id-ns -H /dev/nvme0n1
...
LBA format 0 : ... 512 bytes (in use)
LBA format 1 : ... 4096 bytes
sudo nvme format --lbaf=1 /dev/nvme0n1

this installs the ‘nvme’ command and uses it to

show whether the drive supports 4k sectors and, if

so, to re-format it to use 4k sectors vice 512B

sectors. Changing between 512e and 4k will destroy

all data on the disc.

The blank drive then needs to be formatted.

Cunning plan

I had a cunning plan to use a multi-

format NVMe drive to include a

‘LinuxBoot’ FAT partition for the Linux

boot drive ‘/boot’, a filecore partition for

RISC OS and an ‘ext4’ partition for the

Linux rootfs ‘/’. I thought the FAT

partition could be used to share files

between Linux and RISC OS.

A filecore partition has to start at the

start of the disc (actually from address

&C00 onwards where information about

the disc can be read, including its size and

thus where the map information is stored,

always halfway through the partition

onwards). This conveniently leaves space

untouched at the start of the disc (&000 to

&BFF) where other operating systems

expect to read information about how the

disc is partitioned.

FileCore stores its disc map at about

half way through the partition space

reserved for it and allocates space for files

from there onwards.

What the partition table says about a

partition of type ‘AD’ (filecore) is ignored

by RISC OS. So long as it covers the space

on disc up to where the filecore partition

actually ends, other operating systems will

not trample on the filecore data.

This looks difficult

PartMgr can place a DOS image file

!Boot.Loader at a suitable position within

the filecore partition, near the start but at a

1MB boundary. The area on the disc that

precisely corresponds to the space

occupied by this file can then be marked as

the extent of a FAT partition.

Either Linux or RISC OS can write to

this area and the result be viewed on either

platform. On a disc with 4k sectors,

however, the contents of the FAT partition

can either be suitable for RISC OS or for

Linux but not both as DOSFS is ‘hard-

coded’ to use 512B sectors.

PartMgr will also create a suitable

‘MBR’ partition table at disc address

&000-&1FF to protect the two partitions,

see above. Other operating systems place

restrictions on where partitions may start

and end (e.g. on a 1MB boundary on

Linux with 4k sectors). This depends on

the drive design.

This is the method used for SD cards

on the Raspberry Pi to present a FAT

partition when starting up and a FileCore

structure to RISC OS.

So, if RISC OS filecore is not the only

show in town, it is a good idea to have a

partition table defining the space used and

how much of the disc space is still

unallocated.

Other operating systems use the

partition table at CHS(0,0,1) to identify

which parts of the disc have been already

used by partitions and whether or not it

can recognise them and read or write to or

from them.

3 �Article on SSDs

0000000000 ...
00000001BE 00 00 00 00 0E 00 00 00
00000001C6 00 01 00 00 00 2C 01 00
00000001CE 00 00 00 00 AD 00 00 00
00000001D6 00 2D 01 00 D4 82 70 0B
00000001DE 00 ...
000002C000 xx xx xx 4D 53 44 4F 53
000002C008 ...
0000100000 start of 300 MB FAT partition
0000100008 ...
0012D00000 end of 300 MB FAT partition
0012D00008 ...
0012E00000 end of 301MB ‘Protect’ object
0012E00000 ‘start’ of 750GB partition
0012E00008 ...
B71B000000 end of 750000MB partition
B71B000000 start of next partition
Note:
012C00000 = 300MB ; 012D00000 = 301MB
00002C000 + 012D00000 = 012D2C000
2C 4k sectors = 00002C000
301MB FileCore object encompasses the
300MB FAT partition

The partition table entries at 01BE and 01CE

protect the 750000MB FileCore partition and

define the start and end of a 300MB FAT partition.

Note: 750,000MB = &B71B000000

Which NVMe drives will do 4k?

A good question. They all do 512B

sector emulation but only some do 4k.

The specification for an NVMe drive does

not usually mention whether it is capable

of doing 4096B sectors so it is a matter of

guesswork when purchasing.

A 128GB or 256GB NVMe drive is

unlikely to benefit very much from using

4096B sectors.

4 �Article on SSDs

I have tried two drives so far

- a 1TB 2230 Sabrent

model SB-2130-1TB

(£94.99) and a 512GB

2242 Sabrent model SB-

1342-512 (£59.99).

Both are single-sided (so fit

Waveshare IO board) and

both can do 4k. Only the

2242 drive will fit DeskPi.

What the 1TB drive looks like in Linux:

DiscKnight 1.55 (12-Aug-2018) [32bit] Serial no. ########

Arguments: -v -l NVMe 4

Boot block - Boot Record
 Number of Tracks : 59757
 Number of Heads : 17
 Sectors per track : 63
 Sector size : 4096
 Density : hard disc
 ID Length : 21
 Bytes per map bit (LFAU) : 8192
 Minimum object size : 176K
 ...

Checking directory structure

 Directory $ SIN=&0B1A5001 length=&00000800=2048
 Chunk at &0000001E889A4000 +&0002C000 sharing sectors 0 to 0

 Directory $.!Boot SIN=&0B1A5101 length=&00000800=2048
 Chunk at &0000001E889D0000 +&0002C000 sharing sectors 0 to 0

 File $.!Boot.Loader SIN=&00000300 length=&12C00000=300M
 Chunk at &0000000000100000 +&0FB00000
 Chunk at &000000000FC00000 +&03100000

——————————————————————-
 Disc is good
——————————————————————-

DiscKnight shows that the file Boot:Loader is at disc address &100000

Is there a purpose to this?

Yes. It means that we can share a drive

between Linux and RISC OS without

them interfering with each other. There is

now no need for RISC OS to access the

contents of the FAT partition.

Files can be shared between RISC OS

and Linux by using a FAT-formatted USB

drive.

Summary

PartMgr will initialise a Pi-style two-

partition NVMe drive creating a 300MB

FAT partition and co-located FileCore

‘Boot:Loader’ object within a 250000MB

or 750000MB filecore partition.

We can use Linux to add a 20GB

‘ext4’ partiton in the unused 250GB on

the drive and a standard Linux distro

(some 9GB) can be copied to it using the

Linux ‘dd’ command.

Rebooting Linux again and ‘checking’

the Linux partition will extend it to the full

size of the partition that you created

without losing any data.

The last step is to edit the file /etc/fstab

in this new partition to include the UUID

of the NVMe partitions rather than the

UUID of the drive it was copied from.

Finally edit the file ‘CMDLINE.TXT’

to specify the NVMe drive’s UUID and

Linux will now boot from the NVMe drive

rather than from a USB drive.

That’s it for now, folks!

Chris Hall chris@svrsig.org

5 �Article on SSDs

